
0

1

1.1

1.2

2

2.1

2.2

2.2.1

2.2.2

2.2.3

3

3.1

3.2

3.3

3.4

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

3.5

3.6

4

Table	of	Contents
Introduction

Getting	Started

Installing

Examples

Quick	Collection

Extend	or	Mixin

Usage

fill(...)

haul(...)

refill(...)

Sparse	Collection

Extend	or	Mixin

Configuration

Worker	Lifecycle

Usage

filterAsync(...)

isPrepared(...)

mapAsync(...)

prepare(...)

reduceAsync(...)

resetProjection(...)

sortAsync(...)

Custom	Methods

Advanced	Usage

Change	Log

Backbone.Conduit

1



Backbone.Conduit

You	Want	More	Data	in	Your	Backbone
We	hear	you.	Backbone	is	intentionally	a	small-scale,	event-driven	Model-View
framework;	this	is	one	of	its	greatest	attributes.	However	there	are	some	use	cases
where	you	need	larger	data	sets.	Event-driven	frameworks	need	special	handling	to
perform	well	in	these	scenarios.

Backbone.Conduit	is	a	Backbone	plugin	that	improves	the	ability	to	handle	large	scale
data	sets.

Why	Use	It
As	web	applications	grow	more	complex,	their	data	requirements	tend	to	increase	as
well.	Scaling	to	larger	data	sizes	typically	falls	on	the	server-side	code	to	handle	in	the
form	of	paging	data	as	well	as	complex	sorting,	filtering,	and	mapping.	However	scaling
on	the	server	is	not	always	the	easier	path.	There	are	some	use	cases	where	shipping
all	the	data	to	the	client	and	letting	it	figure	things	out	is	a	more	efficient	use	of
resources.

	Backbone.Conduit		provides	two	different	Collections	you	may	use:

QuickCollection	provides	a	Collection	that	accepts	new	models	~	40%	faster	than
the	base		Backbone.Collection	.	Use	it	in	situations	where	you	expect	to	have	more
than	a	few	hundred	of	items,	up	to	several	thousands.
SparseCollection	provides	a	Collection	that	manages	all	data	on	a	different	thread.
This	allows	for	heavy	data	processing	client-side	and	can	scale	to	hundreds	of
thousands	of	items.	It	requires	more	care	to	load	&	manage	the	data,	but	is	very
scalable	and	performant.

Our	Goal

Backbone.Conduit

2Introduction

http://backbonejs.org


The	data	layer	of	Backbone	--	the		Backbone.Collection		and		Backbone.Model		--	is	a
simple,	well-understood	abstraction	on	top	of	a	REST-ful	server	interface.
	Backbone.Conduit	's	goal	is	to	extend	the	existing	Backbone	functionality	in	ways	that
allow	it	to	handle	more	data.

Any	scalable	solution	must	be	careful	to	not	perform	unnecessary	work.	The	core
components	of	Backbone.Conduit	have	made	some	choices	about	what	work	is
unnecessary	when	dealing	with	large	data	sets.	While	Backbone	is	famously	non-
opinionated,	Backbone.Conduit	takes	an	opinion	about	how	to	best	scale.

Requirements
Backbone.Conduit	requires:

BackboneJS	version	1.0	or	greater
All	browsers	that	support	Web	Workers
All	browsers	that	support	Native	Promises.	If	you	must	support	IE	10/11,	you	can
initialize	a	Promise.polyfill	prior	to	loading	Backbone.Conduit.

Other	Links:
Here's	a	pdf	of	this	documentation
Check	out	the	Demo.
Here's	the	GitHub	Repo
Please	[File	An	Issue]	if	you	find	a	problem
(https://github.com/pwagener/backbone.conduit/issues).
Ask	Questions	either	via	Gitter	or	via	Twitter

Backbone.Conduit

3Introduction

http://caniuse.com/#search=web%20worker
http://caniuse.com/#search=Promises
http://conduit.wagener.org
https://github.com/pwagener/backbone.conduit
https://github.com/pwagener/backbone.conduit/issues
https://gitter.im/pwagener/backbone.conduit
https://twitter.com/peterwagener


Getting	Started	with	Backbone.Conduit
The	two	different	Collection	implementations	are	effective	at	different	situations.

QuickCollection
This		QuickCollection		is	useful	for	situations	where	you	need	better	performance	in
initializing	your	Collection.	It	actively	avoids	doing	some	of	the	initialization	work	in	a
	Backbone.Model	.	It	provides	several	work-alike	methods	(	haul(...)	,		fill(...)	,	and
	refill(...)	)	that	perform	better	than	the	comparable		Backbone.Collection		methods.
Think	of	it	as	a	drop-in	replacement	for	a		Backbone.Collection	.

SparseCollection
The		SparseCollection		fetches	and	stores	the	raw	data	in	a	Collection	in	a	Web	Worker.
It	provides	several	asynchronous	methods	(	sortAsync(...)	,		filterAsync(...)	,
	mapAsync(...)	,	and		reduceAsync(...)	)	that	enables	data	processing	on	large	data	sets
in	the	client.	It	also	does	not	create	any		Backbone.Model		instances	until	they	are
explicitly	requested	via	the		prepare(...)		method.	This	avoids	the	extremely	expensive
Model	creation	until	the	developer	needs	to	attach	a	model	to	a	View.

Backbone.Conduit

4Getting	Started



Installation
Backbone.Conduit	is	available	in	both		bower		and		npm	:

$	bower	install	--save	backbone.conduit

...	or	...

$	npm	install	--save	backbone.conduit

Accessing
Backbone.Conduit	is	packed	so	that	it	is	accessible	in	several	ways.	However	you	get
access	to	it,	this	documentation	simply	refers	to		Conduit		as	the	namespace.

RequireJS	Structures

If	you're	building	a	webapp	that	asynchronously	loads	its	dependencies,	you're	probably
using	RequireJS:

//	In	your	require.config	...

require.config({

				...

				'backbone.conduit':	'bower_components/backbone.conduit/dist/backbone.conduit.js'

});

//	In	your	separate	module	files,	just	pull	it	in:

define([	'backbone.conduit'	],	function(Conduit)	{

				return	Conduit.QuickCollection.extend({

								//	...	your	behavior	here

				});

});

CommonJS	Structures

If	you're	leveraging	it	in	a	server-side	environment	directly	(i.e.	Node)	or	as	part	of	your
build	process,	you're	probably	using	CommonJS.	Requiring	Conduit	works	just	like	any
other	CommonJS	module:

Backbone.Conduit

5Installing

http://requirejs.org
http://wiki.commonjs.org/wiki/CommonJS


var	Conduit	=	require('backbone.conduit');

var	MyCollection	=	Conduit.QuickCollection.extend({

				//	...

});

As	a	Global	Object

Finally,	if	you	are	not	using	modular	JavaScript,	Conduit	is	accessible	globally	as
	Backbone.Conduit	:

var	MyCollection	=	Backbone.Conduit.QuickCollection.Extend({

				//	...

});

Backbone.Conduit

6Installing



Examples
Please	check	out	the	live	demo.

If	you	are	interested	in	the	code	behind	the	demo,	it	is	included	in	the	GitHub	repo,	with
details	on	running	the	example	locally.

The	data-handling	pieces	of	the	demo	are	mostly	limited	to:

BasicCollection.js	-	A	basic		Backbone.Collection		instance	that	is	used	as	a
benchmark
ConduitCollection.js	-	An	example	of	extending		Conduit.QuickCollection		for	faster
data	handling
SparseCollection.js	-	An	example	of	extending		Conduit.SparseCollection		for
scalable,	asynchronous	data	handling

Please	the	the	About	page	of	the	demo	for	details	of	what	the	code	is	doing.

Backbone.Conduit

7Examples

http://conduit.wagener.org
https://github.com/pwagener/backbone.conduit/tree/master/examples
http://conduit.wagener.org/about.html


QuickCollection:	Faster	Model	Creation
Model	creation	in		Backbone		is	expensive,	and	scales	linearly.	At	some	point	above	a
few	hundred	items,	the	simple	act	of	creating	the	Collection	affects	the	performance	of
the	UI.	The		Conduit.QuickCollection		can	avoid	some	of	that	Model-creation	overhead
for	you.	It	incorporates	best	practices	for	using	collections	to	handle	large	data,	and	is
optimized	to	create		Backbone.Model		instances	faster.

	QuickCollection		works	just	like	any	other		Backbone.Collection	,	but	it	provides	three
work-alike	methods	that	work	slightly	differently:

	refill(...)		works	just	like		Backbone.Collection.reset(..)	
	fill(...)		works	just	like		Backbone.Collection.set(...)	
	haul(...)		works	just	like		Backbone.Collection.fetch(...)	

Use	these	methods	when	you	are	handling	larger	data	sets.	Depending	on	the
JavaScript	engine	you	use,	you'll	see	some	improvements	in	performance:

Backbone	Method Conduit.QuickCollection Improvement

	reset(data,	options)	 	refill(data,	options)	 ~	47%

	set(data,	options)	 	fill(data,	options)	 ~	54%

	new	Collection(data)	 	new	Conduit.QuickCollection(data)	 ~	49%

Check	out	the	comparison	in	this	demo.

Some	typical	use	cases

Initializing	from	Data	on	the	Page

To	bootstrap	the	collection	with	data	that	is	already	available,	use	the		refill(...)	
method:

//	Data	placed	on	the	page	by	the	server

var	aLargeArray	=	<%=	@accounts.to_json	%>;

var	accounts	=	new	Conduit.QuickCollection();

accounts.refill(aLargeArray);

Backbone.Conduit

8Quick	Collection

http://conduit.wagener.org


Initializing	from	Data	Fetched	Asynchronously

To	bootstrap	the	collection	with	data	that	from	the	server,	use	the		haul(...)		method,
listening	for	the	'sync'	event	or	handling	the	resolved	Promise:

var	AccountsCollection	=	Conduit.QuickCollection.extend({

				...

});

var	accounts	=	new	AccountsCollection();

accounts.once('sync',	function()	{

				console.log("You've	got	data");

});

accounts.haul().then(function()	{

				console.log("Another	way	of	knowing	you've	got	data");

});

Backbone.Conduit

9Quick	Collection



QuickCollection	Extension	or	Mix	In
The		QuickCollection		is	composed	of	three	different	modules.	To	use	it,	you	can	either
extend		Backbone.Conduit.QuickCollection		or	mix	the	modules	into	your	own	Collection
instance.

Extending
The		QuickCollection		Backbone	class	includes	all	the	functionality	described	below.
Extend	it	like	you	would	any	other	Backbone	class:

var	MyCollection	=	Backbone.Conduit.QuickCollection.extend({

				initialize:	function(models,	options)	{

								//	...

				},	

				//	...	and	so	on

});

var	collection	=	new	MyCollection();

//	If	you	have	a	large	amount	of	data	injected	onto	the	page,	instead	of	'reset(...)'	do	...

var	aBigArray	=	[	...	];

collection.refill(aBigArray);

//	Or,	if	you	need	to	get	it	asynchronously,	instead	of	'fetch()'	do	...

collection.haul();

Mixin
You	may	already	be	extending	from	another		Backbone.Collection		class.	Or,	you	may
not	want	to	include	all	of	the	functionality	of	a		QuickCollection	.	In	that	case,	you	can
manually	add	whatever	functionality	you	need:

Backbone.Conduit

10Extend	or	Mixin



var	MyCollection	=	Backbone.Collection.extend({

				//	...	the	usual	stuff	...

});

Conduit.haul.mixin(MyCollection);

var	collection	=	new	MyCollection();

collection.haul();

There	are	also	mixin	methods	for		Conduit.fill		and		Conduit.refill	.	Note	that	mixing
in	the		haul		module	also	will	implicitly	add		fill		and		refill	,	as	they	are	explicit
dependencies.

One	cavaet	with	using	the	mixin	capability:	it	does	not	alter	the	Constructor	of	your
Collection.	Therefore,	passing	raw	model	data	directly	into	the	collection	will	use
	Backbone.Collection.reset(...)	,	which	will	perform	the	same	as	a	regular	Collection.
Instead,	instantiate	an	empty	Collection	and	use		refill		directly:

var	MyCollection	=	Backbone.Collection.extend({

				//	...	the	usual	stuff	...

});				

Conduit.haul.mixin(MyCollection);

//	This	won't	have	any	optimizations

var	mySlowCollection	=	new	MyCollection(rawModelData);

//	...	but	this	will

var	myFastCollection	=	new	MyCollection();

myFastCollection.refill(rawModelData);

Backbone.Conduit

11Extend	or	Mixin



Using	QuickCollection
Apart	from	loading	data,		QuickCollection		should	be	used	exactly	the	same	way	as	a
regular		Backbone.Collection	.	Loading	data	via	the		refill(...)	,		fill(...)	,	or
	haul(...)		methods	work	very	similarly	to	their	Backbone	counterparts.	However,	each
method	does	explicitly	do	less	work	than	the	regular	Backbone	method.	The	tradeoffs
chosen	by	Conduit	(i.e.	no	firing	of	individual	"add"	events)	are	easy	to	work	with.	See
the	API	of	each	individual	method	for	details	of	the	differences.

NOTE:	You	can	still	use	the	regular		reset(...)	,		set(...)		and		fetch(...)		methods	of
a		QuickCollection		instance,	but	they	will	not	use	the	optimized	Model	creation	code.

Backbone.Conduit

12Usage



Backbone.Conduit.QuickCollection.fill(...)
The		Backbone.Conduit.QuickCollection		fill(...)	method	provides	an	alternative	to	set(...),
allowing	you	to	add	data	to	a	Collection.	It	supports	the	exact	same	options	as	specified
by	Backbone.Collection.set.

Like	the	refill	module,	it	is	provided	by	default	in	Conduit.QuickCollection:

				var	collection	=	new	Conduit.QuickCollection();

				collection.fill(someLargeArray,	options);

You	can	also	mix	the	functionality	into	your	own	Collection	subclass:

var	MyCollection	=	Backbone.Collection.extend({	...	});

Conduit.fill.mixin(MyCollection);

collection.fill(someLargeArray,	options);

Differences	from	Backbone.Collection.set(...)
Conduit.fill's	behavior	differs	in	some	significant	ways:

fill(...)	does	not	trigger	individual	add,	remove,	or	change	events.	Instead,	a	single
"fill"	event	will	be	triggered	after	all	elements	have	been	added.
No	data	validation	on	Model	instance	creation
No	tracking	of	previous	attributes	(i.e.	"undefined")	within	the	Model	instances

Also,	note	the	following	may	reduce	the	effectiveness	of	Conduit.fill's	optimizations:

If	the	Model	being	used	by	the	Collection	provides	a		defaults		hash,	the
performance	improvements	will	be	reduced
If	you've	overwritten	the	Backbone.Model	Constructor,	the	performance
improvements	will	be	greatly	reduced	(overriding	initialize(...)	is,	of	course,	just	fine)

Backbone.Conduit

13fill(...)

http://backbonejs.org/#Collection-set


Backbone.Conduit.QuickCollection.haul(...)
The		Backbone.Conduit.QuickCollection		haul(...)	method	provides	an	alternative	to
fetch(...)	that	utilizes	either		fill(...)		or		refill(...)		to	add	the	returned	data	into	the
Collection.	It	supports	the	same	options	specified	by	Backbone.Collection.fetch.	It
returns	a	Promise	that	resolves	when	the	data	has	been	successfully	received	from	the
server	and	added	to	the	collection.

It	is	meant	as	a	special-purpose	replacement	for		fetch(...)		for	when	you	must	load	a
large	number	of	items	from	the	server.		haul(...)		is	used	exactly	like		fetch(...)	:

var	MyCollection	=	Conduit.QuickCollection.extend({

				//	...	your	own	Collection	behaviors

});

var	accounts	=	new	MyCollection();

//	If	you	want	to	use	events,	listen	to	'sync'

accounts.once('sync',	function()	{

				//	...	do	something	with	the	full	set	of	accounts

});

//	If	you	want	to	use	Promises,	chain	away

accounts.haul().then(function()	{

				//	...	do	something	with	the	full	set	of	accounts

});

If	you	explicitly	want	to	use		refill(...)		(the	analogous	method	to
	Backbone.Collection.reset(...)	),	then	pass	in	the		reset		option:

accounts.haul({	reset:	true	});

In	either	case,	the	collection	will	trigger	a	"sync"	event	when	it	has	been	synchronized
with	the	server,	just	like	the	behavior	of		fetch(...)	.

Backbone.Conduit

14haul(...)

http://backbonejs.org/#Collection-fetch


Backbone.Conduit.QuickCollection.refill(...)
The		Backbone.Conduit.QuickCollection		refill(...)	method	provides	an	alternative	to
reset(...)	that	is	optimized	for	faster		Backbone.Model		creation.	It	supports	the	same
options	as	Backbone.Collection.reset.

Like	[the	fill	module],	it	is	provided	by	default	in		Conduit.QuickCollection	:

var	MyCollection	=	Conduit.QuickCollection.extend({

				//	...	your	own	Collection	behaviors

});

var	accounts	=	new	MyCollection();

accounts.refill(<%=	@accounts.to_json	%>);

Alternatively,	you	may	mix	the	method	into	a	Collection	of	your	own:

var	MyCollection	=	Backbone.Collection.extend({

				//	...	your	own	Collection	behaviors

});

Conduit.refill.mixin(MyCollection);

var	accounts	=	new	MyCollection();

accounts.refill(<%=	@accounts.to_json	%>);

Conduit's		refill(...)		method	fires	a	"reset"	event	in	the	same	manner	of	the
	reset(...)		method,	so	it	can	be	used	as	a	drop-in	replacement.

Differences	from
Backbone.Collection.reset(...)
Performance	of		refill(...)		is	~	45%	better	than		reset(...)		in	most	use	cases.	The
behavior	does	differ	in	some	significant	ways:

No	data	validation	on	Model	instance	creation
No	tracking	of	previous	attributes	(i.e.	"undefined")	within	the	Model	instances

Also,	note	the	following	may	reduce	the	effectiveness	of	Conduit.refill's	optimizations:

If	the	Model	being	used	by	the	Collection	provides	a		defaults		hash,	the

Backbone.Conduit

15refill(...)

http://backbonejs.org/#Collection-reset


performance	improvements	will	be	reduced
If	you've	overwritten	the	Backbone.Model	Constructor,	the	performance
improvements	will	be	greatly	reduced	(overriding	initialize(...)	is,	of	course,	just	fine)

Backbone.Conduit

16refill(...)



SparseCollection
As	noted	elsewhere,	Model	creation	in		Backbone		is	very	expensive.	For	large	data	sets
(tens	or	hundreds	of	thousands	of	items),	even	relatively	simple	data	structures	will
cause	a	Backbone-based	web	application	to	hang.	Additionally,	any	non-trivial	amount	of
data	organization	(joining,	filtering,	sorting)	over	a	very	large	number	of		Backbone.Model	
instances	does	not	scale	well,	as	those	operations	are	synchronous.

The		Conduit.SparseCollection		addresses	both	of	these	problems.	It	fundamentally
changes	how	a		Collection		operates	to	storage	and	management	data	in	a	dedicated
Web	Worker	thread.	The	data	stored	directly	in	the		Collection		is	sparse	--	only	models
that	have	been	explicitly	requested	are	created	and	available	there.	This	leaves	the	main
Javascript	thread	free	to	do	what	it	should	always	be	doing:	interacting	with	the	user.

You	can	see	how	effective	this	is,	even	with	large	data	sets,	in	the	demo	app.

Please	be	aware	this	implementation	has	some	limitations;	see	the	Usage	section	for
details.

Backbone.Conduit

17Sparse	Collection

http://conduit.wagener.org


SparseCollection	Extension	or	Mixin
The		SparseCollection		can	be	used	directly,	extended,	or	mixed	into	another
	Collection		constructor.

Extending
The		SparseCollection		Backbone	class	includes	all	functionality	described	below.	Use	it
or	extend	it	like	you	would	any	other	Backbone	class:

Backbone.Conduit.SparseCollection.extend({

				initialize:	function(models,	options)	{

								//	...

				},	

				//	...	and	so	on

});

var	collection	=	new	MyCollection();

//	If	you	have	a	large	amount	of	data	injected	onto	the	page,	instead	of	'reset(...)'	do	...

var	aBigArray	=	[	...	];

collection.refill(aBigArray);

//	Or,	if	you	need	to	get	it	asynchronously,	instead	of	'fetch()'	do	...

collection.haul();

Mixin
If	you	are	already	extending	from	a		Backbone.Collection		class,	you	may	mix	in	the
	sparseData		module's	behavior	to	act	like	a		SparseCollection	:

Backbone.Conduit

18Extend	or	Mixin



var	MyCollection	=	Backbone.Collection.extend({	...	});

Conduit.sparseData.mixin(MyCollection);

//	Let's	get	some	data

var	collection	=	new	MyCollection();

collection.haul().then(function()	{

				console.log('We	now	have	'	+	collection.length	+	'	items!');

});

The		sparseData		module	will	also	include	the		haul	,		fill		and		refill		modules	from
the		Conduit.QuickCollection	;	those	methods	act	as	replacements	for	the	corresponding
	fetch	,		set	,	and		reset		methods	of	a		Backbone.Collection	.

Note	that	mixing	in	functionality	to	an	existing	Collection	class	may	be	problematic.	The
internal	behavior	of	a		SparseCollection		is	dramatically	different	than	other	collections.
See	the	Usage	section	for	more	details.

Backbone.Conduit

19Extend	or	Mixin



SparseCollection	Configuration
Utilizing	a	web	worker	for	data	management	requires	some	configuration.	Specifically,
you	must	provide	the	path	to	where		Backbone.Conduit		is	installed.	Use	the
	Backbone.Conduit.config		object	to	enable	Web	Worker	support:

//	Enable	the	Conduit	worker

Conduit.config.enableWorker({

				paths:	'/your/path/to/backbone.conduit',

				//	Optional	arguments:

				debug:	true,

				workerDebug:	true

}).then(function()	{

				console.log('Worker	is	now	enabled!');

});

The		paths		argument	is	required,	and	can	be	either	a	string	or	an	array	of	strings
specifying	paths	to	look	for	the	worker	in.	Note	the	path	is	to	the	directory,	not	the	file.

Other	configuration	options	you	can	choose	to	provide:

debug	-	If	true,	JS	console	logs	will	include	some	output	about	loading	&	configuring
the	worker.
workerDebug	-	If	true,	JS	console	logs	will	include	output	for	each	method	executed
on	the	worker.

This	call	returns	a	Promise	that	resolves	when	the	worker	has	been	successfully	loaded.

Backbone.Conduit

20Configuration



SparseCollection	Web	Worker	Lifecycle
The		SparseCollection		will	create	a	worker	thread	on	demand	when	necessary.	After	it	is
created,	the	worker	will	live	until	it	is	manually	terminated.	Additionally,	any	instance	of	a
SparseCollection	will	create	its	own	worker;	there	is	a	significant	risk	of	leaking	threads	if
you	plan	on	using	multiple		SparseCollection	s.

Manually	Terminating	the	Web	Worker
Unless	your		SparseCollection		is	going	to	survive	for	the	life	of	your	web-based
application,	you	should	manually	terminate	it.	Since	the	canonical	data	is	stored	on	the
worker	itself,	this	should	only	be	done	after	you	have	prepared	all	the		Model		instances
you	need	in	the	UI	thread	(see	prepare(...)).	Use	the	'collection.stopWorkerNow()'
method	to	terminate	the	worker,	which	does	so	synchronously.

One	safe	technique	would	be	to	register	an		onunload		event	that	does	exactly	that:

var	collection	=	new	MySparseCollection();

window.onunload	=	function()	{

				collection.stopWorkerNow();

				//	The	worker	is	now	stopped.

);

jQuery	provides	a	method	for	registering	multiple	handlers	as	well.

Manually	Starting	the	Web	Worker
The	worker	will	be	created	on	demand,	but	doing	so	takes	a	bit	of	time	to	load	the
necessary	JS	from	the	server	and	initialize	things.	If	you	want	to	proactively	create	the
worker	for	your	collection,	use		collection.createWorkerNow()		method.	This	returns	a
	Promise		that	resolves	when	the	worker	has	been	create.

var	collection	=	new	MySparseCollection();

collection.createWorkerNow().then(function()	{

				//	The	worker	has	now	been	created

});

Backbone.Conduit

21Worker	Lifecycle

https://api.jquery.com/unload/


Using	SparseCollection
A		SparseCollection		makes	an	explicit	tradeoff	for	developers:	it	uses	asynchronous
behavior	in	order	to	provide	better	performance	and	scalability.	The	canonical	copy	of
the	data	lives	in	a	fully	separate	thread,	requiring	the	developer	to	be	much	more
methodical	in	the	loading,	parsing,	organizing,	and	accessing	of	that	data.	This	also
means	that	most	of	the	synchronous	data-related	methods	in	a		Backbone.Collection		(for
instance,		sort()	,		find()	,	and	others)	will	intentionally	throw	an	error.	This	class
provides	asynchronous	replacements,	however,	enabling	much	more	powerful	data
handling	in	the	client.

The	typical	flow	of	code	for	a		SparseCollection		will	look	something	like	this:

//	Create	the	Sparse	Collection

var	collection	=	new	MySparseCollection();

//	First	fetch	the	data

collection.haul()

				.then(function()	{

								//	Next	organize	the	data

								return	collection.sortAsync();

				}).then(function()	{

								//	Next	prepare	a	few	models

								return	collection.prepare({	

												indexes:	{	min:	0,	max:	10	}

								});

				}).then(function(models)	{

								//	Use	the	models

								console.log('You've	got	models!');

				});

Loading	Data	Into	the	Collection
This	module	includes	the	haul	module	from	the		QuickCollection	,	and	builds	on	the
performance	improvements	implemented	there.	To	that	end,	data	should	be	loaded	the
same	way:	use	the		haul()		method	(a	replacement	for		fetch()	)	for	loading	data	via	an
XHR,	or	using		fill()	/	refill()		(replacements	for		set()	/	reset()		to	load	data	into	a
Collection	directly.	Typical	usage	will	look	similar	to	code	using
	Conduit.QuickCollection	:

Backbone.Conduit

22Usage



var	MyCollection	=	Backbone.Collection.extend({	...	});

Conduit.sparseData.mixin(MyCollection);

//	Let's	get	some	data

var	collection	=	new	MyCollection();

collection.haul().then(function()	{

				console.log('We	now	have	'	+	collection.length	+	'	items!');

});

Since		haul()		returns	a	promise,	you	are	guaranteed	the	data	has	been	stored	on	the
worker	when	it	resolves.

Parsing	Loaded	Data
Conduit	expects	the	data	provided	to	the	worker	will	be	an	Array	--	not	an	Object.
However,	to	minimize	the	size	of	the	JSON	file,	many	API's	deliver	data	packaged	inside
of	another	object.	For	instance,	the	server	may	return	JSON	that	looks	like:

{

				meta:	{

								//	...	data	about	the	data

				},

				data:	[

								//	...	the	data	itself

				]

}

A	typical		Backbone.Collection		will	override	Backbone.Collection.parse(...)	to	transform
this	data	into	the	appropriate	array.	However,	that	is	not	feasible	or	desirable	with	a	very
large	data	set;	doing	this	work	on	the	main	UI	thread	would	lead	to	poor	performance.

Instead,	you	may	transform	the	raw	data	as	a	part	of	the		haul()		operation	with	the
	postFetchTransform		option.	You	can	specify	the	transformation	in	two	ways:	First,	if	you
only	want	to	extract	the	data	from	a	larger	object,	specify	the	property	on	the	object	that
we	should	use	as	the	actual	data.	For	instance:

Backbone.Conduit

23Usage

http://backbonejs.org/#Collection-parse


var	collection	=	new	MyCollection();

collection.haul({

				postFetchTransform:	{

								useAsData:	'data'

				}

}).then(function()	{

				console.log('The	"data"	attribute	was	used	as	the	collection	of	items');

});

If	you	need	to	do	a	more	complex	transformation,	you	can	provide	the	name	of	the
method	to	call	that	implements	the	transformation:

//	Let's	get	some	data	...	and	transform	it

var	collection	=	new	MyCollection();

collection.haul({

				postFetchTransform:	{

								method:	'extractFromRawData`,

								context:	{	userName:	'pwagener'	}

				}

}).then(function(finalTransformContext)	{

				console.log('The	raw	data	has	been	transformed	by	my	own	method');

});

When	you	use	a		method		to	transform	the	data,	the	returned	promise	will	resolve	to	the
final	state	of	the	context	of	the	transforming	function	(named		finalTransformContext	
here).	This	provides	a	lot	of	flexibility,	including	allowing	you	to	extract	meta	data	from
the	JSON	response	and	keep	it	on	the	main	UI	thread.	You	can	also	provide	the	initial
context	to	the	transforming	method	by	providing	a		context		key	to		postFetchTransform	.
The	example	above	provides	the		userName	,	which	can	then	be	used	in	the	transforming
method.

Please	Note:	the	implementation	of	the	transforming	method	(	extractFromRawData		in
this	example)	must	be	provided	separately	to	the	ConduitWorker.	See	the	Custom
Methods	section	for	more	details	on	registering	Conduit	components.	For	this	example,	if
you	wanted	to	remove	a	field	from	the	data	that	will	be	exposed	in	the	collection,	you
would	do	something	like:

Backbone.Conduit

24Usage



ConduitWorker.registerComponent({

				name:	'sampleComponent',

				methods:	[

								{

												name:	'extractFromRawData'

												method:	function(rawData)	{

																var	userName	=	this.userName;

																return	_.map(rawData.data,	function(item)	{

																				//	Add	the	name	from	the	main	thread

																				var	result	=	_.extend({},	{	name:	userName	},	item);

																				//	Don't	include	'password'	in	the	data

																				return	_.omit(item,	'password');

																});

												}

								}

				]

});

That	implementation	should	expect	to	receive	the	raw	data	from	the	requested	URL,	and
must	return	an	array	of	javascript	objects	that	will	represent	the	items	in	the	collection.
Note	it	utilizes	the	context	provided	that	includes	the		userName		key	from	the	main	UI
thread,	shown	as		this.userName		above.

Data	Projections
Since	the	full	copy	of	the	data	is	managed	on	the	worker	thread,	most	synchronous
	Backbone.Collection		method	calls	on	a		sparseData	-enabled	collection	will	throw	an
error.	Instead,		Conduit		provides	alternative,	asynchronous	methods	that	return
promises.

The		sortAsync()	,		filterAsync()	,	and		mapAsync()		methods	can	be	thought	of	as	a
projection	onto	the	original	data.	When	each	projection	is	applied,	the	newly	projected
data	becomes	available.	Projections	can	build	on	top	of	each	other,	so	you	can	first	filter
data	and	then	sort	it.

When	using	a		method		to	implement	the	projection,	they	accept	a		context		to	execute
the	method	in;	the	final	state	of	the		context		is	provided	when	the	method's	returned
	Promise		resolves.	Since	it	came	from	the	Worker	thread	however,	you	cannot	pass
functions	through	via		context	.

The	data	(projected	&	otherwise)	continues	to	live	on	the	worker	thread.	To	return	to	the
original,	unprojected	data,	call		resetProjection()	.	For	instance:

Backbone.Conduit

25Usage



collection.filterAsync(

				//	Apply	some	filter

).then(function()	{

				return	collection.resetProjection();

}).then(function()	{

				//	The	data	is	now	back	to	its	un-filtered	state

});

Finally,	all	data	projection	methods	emit	their	own	events	(i.e.		sortAsync	,		filterAsync	,
	mapAsync	)	upon	completion	to	differentiate	themselves	from	the	comparable
	Backbone.Collection		synchronous	methods.

Limitations
This	module	has	some	limitations.	The	most	notable	limitation	is	any	collection
leveraging		sparseData		should	be	considered	read-only.	The	models	returned	from
	prepare(...)		are	perfectly	functional,	so	feel	free	to	update	those.	But	bear	in	mind
changes	to	those	models	will	not	automatically	propagate	to	the	data	on	the	worker
thread.

If	needed,	you	may	propagate	the	data	back	to	the	worker	yourself	via		fill(...)	.
Further	version	of	Backbone.Conduit	may	introduce	more	functionality	related	to	making
them	fully	writeable	and	automatically	synchronizing	the	data.

If	you	have	feedback	on	use	cases	that	are	important	to	you,	we'd	love	to	hear	it.	Please
file	an	issue	and	help	make		Backbone.Conduit		a	great	way	to	deal	with	large	data	sets.

Backbone.Conduit

26Usage

https://github.com/pwagener/backbone.conduit/issues


SparseCollection.filterAsync(...)
Filter	the	data	in	a	given	manner.	The	method	returns	a		Promise		that	resolves	when	the
filtering	in	completed.

This	can	be	used	as	as	a	"filter	by	property	match",	similar	to	Underscore's	_.where(...)
method,	by	providing	the		where		option:

//	Filtering	by	matching	property	values:

collection.filterAsync({

				where:	{

								name:	'Foo'

				}

}).then(function()	{

				console.log('Filtered	data	has	a	length	of	'	+	collection.length);

});

Alternatively,	you	can	apply	a	"filter	by	an	evaluation	function",	similar	to	Underscore's
_.filter(...)	method,	by	providing	the		method		option.	You	will	need	to	provide	the	Conduit
Worker	the	function	implementation	separately.	See	Custom	Methods	for	details.

Once	that	is	done,	you	can	apply	it	by:

//	Filter	by	calling	an	evaluation	function

collection.filterAsync({

				method:	'ageGreaterThan21'	

}).then(function(resultingContext)	{

				console.log('There	are	'	+	collection.length	+	'	items	older	than	21');

});

When	you	are	using	the		method		option	to	specify	the	filtering,	the	returned		Promise		will
resolve	to	the	final	context	of	the	filtering	function.	See	the	Data	Projections	Section	of
SparseCollection	Usage	for	details.

If	you	prefer	to	specify	the	filter	directly	on	the	collection,	you	can	declare	it	on	the
collection	directly,	similar	to	a	regular		Backbone.Collection		comparator.	For	instance:

Backbone.Conduit

27filterAsync(...)

http://underscorejs.org/#where
http://underscorejs.org/#filter


var	MyCollection	=	Conduit.SparseCollection.extend({

				filterSpec:	{

								method:	'ageGreaterThan21'

				},

				//	...

};

var	collection	=	new	MyCollection();

collection.haul().then(function()	{

				return	collection.filterAsync();

}).then(function(resultingContext)	{

				console.log('The	"ageGreaterThan21"	filter	has	now	been	applied');

});

This	applies	a	projection	on	the	underlying	data	set,	which	can	be	removed	by	calling
	resetProjection()	.	Note	that	to	filter	using	an	evaluation	function,	you	must	provide	the
function	separately.	See	Custom	Methods	for	details.

When		SparseCollection.filterAsync()		completes,	it	fires	the		filterAsync		event	prior	to
resolving	its	Promise.

Backbone.Conduit

28filterAsync(...)



SparseCollection.isPrepared(...)
Determine	if	a	given	set	of	models	is	available	in	the	main	thread.	Returns		true		if	all
the	models	are	available,	or		false		otherwise.	Use	it	to	determine	if	the	models	you
need	have	already	been	prepared.

The	method	accepts	the	same	aruments	as	prepare(...),	allowing	you	to	check	specific
IDs	or	specific	indexes

//	Check	the	first	100	(note	'max'	is	exclusive)

var	prepared	=	collection.isPrepared({

				indexes:	{	min:	0,	max:	100	}

});

//	Check	one	specific	index

var	prepared	=	collection.isPrepared({	

				index:	11	

});

//	Check	specific	IDs

var	prepared	=	collection.isPrepared({

				ids:	[	1,	2,	3,	4	]

});

//	Check	one	specific	ID

var	prepared	=	collection.isPrepared({

				id:	5	

});

If		collection.isPrepared(...)		returns		true	,	then	using	the		collection.get(id)		and
	collection.at(index)		methods	will	work	as	expected.	If	it	returns		false	,	those
methods	will	throw		Exceptions		for	the	referenced	IDs	or	indexes.

Backbone.Conduit

29isPrepared(...)



SparseCollection.mapAsync(...)
Map	the	data	on	the	worker	in	a	given	manner.	The	method	returns	a	promise	that
resolves	when	the	mapping	is	complete.	This	is	conceptually	the	same	as	Underscore's
_.map(...)	function.	Note	that	to	map	the	data	you	must	provide	the	mapping	function
separately.	See	Custom	Methods	for	details.

//	Map	the	data

collection.mapAsync({

				method:	'translateToGerman'

}).then(function(resultingContext)	{

				console.log('The	data	has	now	been	mapped.');

});

This	applies	a	Projection	to	your	data	set.	Also,	note	the	resulting	context	of	the	mapping
function	will	be	provided	by	the	resolved		Promise	.	See	the	Data	Projections	Section	of
SparseCollection	Usage	for	details.

If	you	would	like,	you	can	provide	the	mapping	function	directly	on	the		SparseCollection	
sub-class	as		mapSpec	:

var	MyCollection	=	Conduit.SparseCollection.extend({

				mapSpec:	{

								method:	'translateToGerman'

				}

				//	...

)};

var	collection	=	new	MyCollection();

collection.haul().then(function()	{

				return	collection.mapAsync();

}).then(function(resultingContext)	{

				console.log('The	data	has	now	been	mapped	by	"translateToGerman"	function');

});

This	applies	a	projection	on	the	underlying	data	set,	which	can	be	removed	by	calling
	resetProjection()	.

When		SparseCollection.mapAsync()		completes,	it	fires	the		mapAsync		event	prior	to
resolving	its	Promise.

Backbone.Conduit

30mapAsync(...)

http://underscorejs.org/#map


SparseCollection.prepare(...)
Create	specific	models	in	the	main	thread.

Since	model	creation	is	expensive,	a		SparseCollection		only	holds	models	that	have
been	explicitly	requested.	The	rest	of	the	data	in	a	collection	is	stored	in	raw	form	in	a
Web	Worker	thread.	To	use	models	in	the	main	thread,	they	must	first	be	prepared	by
calling		collection.prepare(...)	.

	prepare(...)		returns	a		Promise		that	resolves	when	the	models	have	been	prepared	in
the	main	thread.	The		Promise		resolves	to	the	model	or	the	set	of	models	that	were
prepared.	Additionally,	after	the		Promise		resolves,	you	can	use	the		collection.get(id)	
or		collection.at(index)		to	reference	the	prepared	models.

This	method	allows	you	to	specify	the	models	to	prepare	by	ID	or	by	index,	and	allows
you	to	prepare	them	individually	or	in	groups:

//	Prepare	a	the	first	100	indexes	(note	'max'	is	exclusive)

collection.prepare({

				indexes:	{	min:	0,	max:	100	}

}).then(function(models)	{	...	});

//	Prepare	one	specific	index

collection.prepare({	

				index:	11	

}).then(function(model)	{	...	});

//	Prepare	specific	IDs

collection.prepare({

				ids:	[	1,	2,	3,	4	]

}).then(function(models)	{	...	});

//	Prepare	one	specific	ID

collection.prepare({

				id:	5

}).then(function(model)	{	...	});

Note	this	method	accepts	the	same	arguments	as	isPrepared(...),	which	can	determine	if
models	have	already	been	prepared	or	not.

Backbone.Conduit

31prepare(...)



SparseCollection.reduceAsync(...)
Reduce	the	data	in	the	array	on	the	worker	down	to	a	single	value.	This	is	conceptually
the	same	operation	as	Underscore's	_.reduce(...)	function.	Just	like	the	Underscore
version,	the		method		you	provide	is	passed	four	values:		memo	,		value	,		index	,	and
finally	a	reference	to	the	full		list		of	data.

You	must	provide	the	Conduit	Worker	the	reduction	function	separately.	See	Custom
Methods	for	details.	Once	that	is	done,	you	reduce	your	data	providing	the		method		and
	memo		arguments:

//	Reduce	the	data

collection.reduceAsync({

				method:	'calculateAverage',

				memo:	0

}).then(function(average)	{

				console.log('The	average	is:	'	+	average);

});

Note	this	method's	returned	promise	resolves	to	the	final	reduction	value.	It	is	not	a
projection,	so	it	does	not	modify	the	underlying	data	set	stored	on	the	worker.

Finally,	you	may	provide	a		context		option	to		reduceAsync(...)	.	The	value	provided
there	will	be	accessible	as		this		in	your	reduction	method.

collection.reduceAsync({

				method:	'summarize',

				context:	{	

								definitions:	{

												...

								}

				}

}).then(function(summary)	{

				//	...

});

Backbone.Conduit

32reduceAsync(...)

http://underscorejs.org/#reduce


SparseCollection.resetProjection()
Remove	any	projections	on	the	original	data	that	have	been	applied	from	calling
	sortAsync()	,		filterAsync()	,	or		mapAsync()	,	returning	the	data	to	its	original	state.

Any	projection	is	applied	on	top	of	previous	projections.	This	method	removes	all
projections	from	the	data,	allowing	you	to	reorganize	your	original	data.	It	returns	a
	Promise		that	resolves	when	all	projections	have	been	removed:

collection.sortAsync()

				.then(function()	{

								return	collection.mapAsync({	...	});

				});

//	...	some	time	later	...

collection.resetProjection()

				.then(function()	{

								console.log('Data	returned	to	the	unsorted,	un-mapped	state!');

				});

Backbone.Conduit

33resetProjection(...)



SparseCollection.sortAsync(...)
Sort	the	data	on	the	worker	thread.	Method	takes	a	single	argument	describing	the	sort
operation,	which	indicates	how	to	sort	the	data.

You	may	choose	to	sort	by	an	individual	attribute	in	your	data	set	by	providing	the
	property		option.	When	doing	so,	you	can	optionally	include	the		direction		to	specify
the	direction	of	the	sort	as		'asc'		(default)	or		'desc'	.

collection.sortAsync({

			property:	'age`

			direction:	'desc'

}).then(function()	{

				//	The	data	on	the	worker	is	now	sorted	by	"age"

});

Alternatively,	you	may	provide	an	evaluation	function	to	specify	your	sorting.	You	must
provide	the	Conduit	Worker	the	sorting	function	separately.	See	Custom	Methods	for
details.	Once	that	is	done,	you	can	provide	the	name	of	the	method	as	the		method	
option:

collection.sortAsync({

				method:	'yourSortMethod'

}).then(function(resultingContext)	{

				//	The	data	is	now	sorted	using	'yourSortMethod'	as	the	evaluator

});

This	applies	a	Projection	to	your	data	set.	Also,	note	the	resulting	context	of	the	sorting
function	will	be	provided	by	the	resolved		Promise	.	See	the	Data	Projections	Section	of
SparseCollection	Usage	for	details.

When		SparseCollection.sortAsync()		completes,	it	fires	the		sortAsync		event	prior	to
resolving	its	Promise.

Backbone.Conduit

34sortAsync(...)



Custom	Methods
Using	a	worker	to	handle	data	manipulation	scales	very	well.	But	using	a	worker	mean
that	passing	a	function	as	a	part	of	the	manipulation	(i.e.	when	sorting	a		Collection	)	is
more	work.		Backbone.Conduit		allows	you	to	provide	extra	Javascript	files	to	load	when
enabling	the	worker.

Registering	Components
If	you	have	functionality	that	is	necessary	for	all	your	application's	sparse	collections,
specify	it	as	a	part	of	the	core	Conduit	configuration:

Conduit.config.enableWorker({

				paths:	'/lib',

				components:	[

								'/basicMethods.js'

				]

});

Any	components	registered	as	a	part	of	the		Conduit.config.enableWorker(...)		call	will
be	included	in	all		Backbone.Conduit.SparseCollection		instances.

However,	it	is	much	more	common	for	each	sparse	collection	to	have	its	own	necessary
functionality.	In	that	situation,	specify	your	component	files	as	a	part	of	the	Collection.
For	instance:

var	MyCollection	=	Conduit.SparseCollection.extend({

				//	...

				conduit:	{

								components:	[

												'/sorters.js'

								],

				},

				//...

});

Here,	the		sorters.js		file	provides	methods	that	can	be	referenced	from	the	above	data
manipulation/projection	methods.	That	file	can	contain	anything	necessary	to	provide	the
sorting	functionality.

Backbone.Conduit

35Custom	Methods



Implementing	Components
ConduitWorker	components	are	specified	by	naming	a	method	something	unique,	then
providing	the	method	implementation.	For	instance,	suppose	your	application	needed	a
sorting	function	that	sorted	things	in	a	case-insensitive	fashion,	and	it	also	needed	to
only	include	items	whose		age		was	greater	than	21.	Your	component	can	define	these
methods	and	then	register	them	by	calling		ConduitWorker.registerComponent		like:

var	byNameCaseInsensitive	=	{

				name:	'byNameCaseInsensitive',

				method:	function(item)	{

								return	item.name.toLowerCase();

				}

};

var	ageGreaterThan21	=	{

				name:	'ageGreaterThan21',

				method:	function(item)	{

								return	item.age	>	21;

				}

}

ConduitWorker.registerComponent({

				name:	'sorters',

				methods:	[

								byNameCaseInsensitive,

								ageGreaterThan21

				]

});

This	separate		sorters.js		file	will	be	loaded	by	the	ConduitWorker	at	the	appropriate
time.	To	then	reference	the	method	when	performing	a	sort,	you	provide	an	object	as	the
	comparator		that	names	the	method.	I.e:

collection.filterAsync({

				method:	{	method:	'ageGreaterThan21'	}

}).then(function()	{

				return	collection.sortAsync({

								method:	{	method:	'byNameCaseInsensitive'	}

				});

}).then(function()	{

				//	The	data	is	now	filtered	via	'ageGreaterThan21'	and	sorted	via	the

				//	'byNameCaseInsensitive'	worker	method

});

Backbone.Conduit

36Custom	Methods



Advanced	Usage

Sharing	Workers
As	of	version	1.1,	the	SparseCollection	provides	the	ability	to	customize	how	the	worker
is	managed	via	the	WrappedWorker	configuration	option.	The	WrappedWorker	basically
will	allow	only	one	message	to	be	sent	until	a	response	is	received,	and	will	put	any
other	outgoing	messages	into	a	queue.	The	interface	is	independent	of	the	rest	of
Conduit's	sparseData	modules,	which	means	you	can	extend	it	more	easily	and	use	your
own	by	setting	it	as	value	for	WrappedWorker	when	you	invoke	enableWorker	in	the
Conduit	config.

An	included	subclass	of	the	WrappedWorker	is	WrappedWorker.SharedWorker.	This	will
share	the	same	actual	worker	"under	the	hood",	so	multiple	sparse	collections	can	share
the	same	worker.	The	benefit	of	this	is	that	you	would	be	able	to	instantiate	multiple
SparseCollection	instances	without	worrying	as	much	about	high	memory	usage	(since
each	worker	has	its	own	JS	VM	instance).

You	can	use	it	like	this:

Conduit.config.enableWorker({

				paths:	'/js/path/to/conduit/dist/',

				WrappedWorker:	Conduit.WrappedWorker.SharedWorker,

});

Caching	Data
Related	to	sharing	workers,	version	1.1	and	beyond	include	support	for	caching	GET
requests	that	are	executed	by	the	worker.	f	you	combined	the
WrappedWorker.SharedWorker	and	the	useCache	option	of	the	restGet	or	haul	method
calls,	you	can	have	multiple	collections	use	the	same	raw	data	from	restGet	call,	while
each	is	still	able	to	apply	projections	on	top.

This	makes	a	lot	more	sense	in	an	example:

Backbone.Conduit

37Advanced	Usage



//	Using	the	WrappedWorker.SharedWorker	instance	so	that	multiple	

//	SparseCollection	data	collections	live	on	the	same	Web	Worker	...

//	Haul	data	for	the	first	sparse	collection

sparseCollectionA.haul({

			url:	'/api/foo',

			useCache:	true	//	will	cause	the	response	to	be	cached	with	the	url	as	key

}).then(function	()	{

			return	sparseCollectionB.haul({

							url:	'/api/foo'

							//	useCache:true	below	will	cause	the	haul	method	to	use	the	existing

							//	cached	data	for	the	url	on	the	worker.		'/api/foo'	will	only	be

							//	fetched	from	the	server	once

							useCache:	true

			});

});

Backbone.Conduit

38Advanced	Usage



Change	Log
If	you	have	problems,	please	file	an	issue.

1.1.X	-	Implemented	worker	thread	pooling	&	data	caching.	(see	here)
1.0.X	-	Moved		SparseCollection		out	of	Experimental	stage.	Leveraged	native
Promises.
0.6.X	-	Added		sparseData		and		SparseCollection		experimental	module.	Renamed
	Conduit.QuickCollection		to		Conduit.QuickCollection		for	clarity.
0.5.X	-	Removed		sortAsync		experimental	module;	removed		fetchJumbo		module,
which	was	replaced	by		haul	;
0.4.X	-	Renamed		Conduit.fetchJumbo		to	the	less-awkward		Conduit.haul	;	provided
experimental		Conduit.sortAsync		module.
0.3.X	-	Provided		Conduit.fetchJumbo		Module	as	an	alternative	to
	Backbone.Collection.fetch(...)	

0.2.X	-	Provided		Conduit.fill		Module	as	an	alternative	to
	Backbone.Collection.set(...)	.
0.1.X	-	First	Release.	Provided		Conduit.refill		Module	as	an	alternative	to
	Backbone.Collection.reset(...)	.

Contributors
Peter	Wagener	Original	Implementation,	Maintainer
James	Ballantine	v1.1	Improvements,	Feedback

Backbone.Conduit

39Change	Log

https://github.com/pwagener/backbone.conduit/issues
https://github.com/pwagener
https://github.com/jballantinecondev

	Introduction
	Getting Started
	Installing
	Examples

	Quick Collection
	Extend or Mixin
	Usage
	fill(...)
	haul(...)
	refill(...)


	Sparse Collection
	Extend or Mixin
	Configuration
	Worker Lifecycle
	Usage
	filterAsync(...)
	isPrepared(...)
	mapAsync(...)
	prepare(...)
	reduceAsync(...)
	resetProjection(...)
	sortAsync(...)

	Custom Methods
	Advanced Usage

	Change Log

